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Executive Summary

What is this Document About?

This document presents a simulation-based risk analysis for a Filecoin-collateralized sta-
blecoin called USDFC. It adapts smart contract logic from Liquity [1] and MakerDAO-like
mechanisms and then examines how well these concepts hold up on the Filecoin network.

Why Does it Matter?
USDFC’s stability depends on managing three core risks:

o Collateral Risk (e.g., large drops in FIL price),
o Redemption Risk (forced removal of a user’s collateral),

o Liquidity and Peg Stability (ensuring USDFC stays near $1).

Key Findings and Output

o Collateral Ratios: We implement a robust simulation environment to stress-test the
robustness of USDFC’s mechanism under several different market conditions.

o Collateral Ratios: A 110% overcollateralization is sufficient to avoid mis-liquidation
risk.

« Redemption Mitigations: Defensive structures such as buffer troves divert forced re-
demptions away from users’ own collateral, mitigating forced-sale concerns.

o System Robustness: Under moderate volatility and appropriate parameters, the sta-
blecoin price remains quite close to peg. Stress tests (90% FIL price crashes) identify

potential shortfalls if the system lacks liquidity or uses too-low collateralization thresh-
olds.

Who Should Read This?
Protocol Designers, Investors, Liquidity Providers, and anyone with an interest in stablecoin
risk analysis.
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Background and Glossary (Section 1): Definitions of the key terms (e.g., troves,
collateral ratios) and a high-level explanation of how the USDFC protocol works.

Simulation Methodology(Section 3): Describes how we model FIL price, trove
liquidations, redemptions, and other system variables.

Risk Assessment (Sections 4 and 6): Examines liquidation probability and redemp-
tion events under various market conditions.

Scenario Analysis and Mitigation (Section 5): Explores different stress scenarios
(crashes, liquidity shortages) and risk-mitigation strategies (buffer troves).

Conclusions and Recommendations (Section 8): Key takeaways for implementing
a safe USDFC ecosystem on Filecoin.

Appendix (Section A): Pseudocode, additional data tables, and details for replicating
or extending the simulations.



1 Background and Glossary

1.1 Stablecoins and Collateralization

A stablecoin is a cryptocurrency pegged to a stable asset—often the U.S. dollar. Many
stablecoins maintain their peg by holding collateral. For example, MakerDAO’s DAI is

backed by ETH, and Liquity’s LUSD is backed by ETH as well. USDFC, the protocol
discussed here, is a CDP-style stablecoin on the Filecoin (FIL) network.

1.2 Key Terms and Definitions

Trove A user’s collateralized debt position. The user deposits FIL as collateral and mints
USDFC stablecoins.

Collateral Ratio (CR) The ratio of a trove’s total collateral value to its debt. For exam-
ple, if a user locks $150 worth of FIL and mints 100 USDFC, the CR is 150%.

Liquidation If the collateral ratio falls below a minimum threshold (e.g., 110%), the trove
is liquidated. The collateral is seized and sold (or used to reimburse the system).

Redemption A forced purchase of collateral by someone who returns USDFC to the proto-
col. Troves with the lowest CR are targeted first; this mechanism helps the stablecoin hold
its $1 peg.

Buffer Trove An additional trove set at a lower CR than the user’s main trove, deliberately
making it a more attractive target for redemptions.

Liquidity Pool (LP) On-chain AMMs that facilitate USDFC-FIL swaps, affecting the sta-
blecoin peg stability.

1.3 Why Filecoin?

Filecoin (FIL) has unique properties (e.g., an active storage market, a different adoption
curve than ETH) that can lead to different price dynamics. Adapting Liquity’s or Maker-
DAQO’s model to FIL might work, but we must verify with simulation whether parameters
like the minimum CR or redemption fees require adjustment.

Remark 1 (Real-World Context). In Ethereum-based stablecoins (MakerDAO, Liquity), we
have seen how heavy market volatility or congested blocks can trigger mass liquidations.
Filecoin’s block times and liquidity may differ from ETH, so risk parameters cannot be copied

blindly.

2 Introduction

USDFC [4] is a CDP-style stablecoin designed for native deployment on Filecoin. It is built
on smart contract logic ported from the Liquity protocol [1], and its system design and
parameter settings—such as the minimum collateralization ratio—are optimized based on
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values originally established during Ethereum’s launch in 2018. Given this, the main goal of
this work is to understand how well can this model be ported to the Filecoin network.
Specifically, this technical analysis will focus three main tasks:

1. Developing a simulation environment for a FIL-backed USDFC

2. Using this simulation environment to evaluate protocol risk from the perspectives of
Liquidity Providers, Market Makers, and stablecoin holders. It will also involve sen-
sitivity analyses to determine how variations in protocol parameters affect both the
stablecoin system and the broader Filecoin economy. Additionally, the study will in-
clude economic stress testing to identify potential failure modes and establish safe
operating bounds for the USDFC protocol.

3. Understand redemption risk

The mechanism behind USDFC can be found in [1, 4]

3 Model Architecture

TL;DR. We create a robust simulation environment extending the work of [2]. Our method-
ology allows us to track several quantities over time, as well as functions and statistical
estimators of them.

We follow an approach similar to that of [2], however, as we will discuss shortly, we
present several differences in our implementation that result in a more robust, uncertainty-
aware simulator.

The simulation employs a Monte Carlo framework to model the USDFC stablecoin system
dynamics over discrete time steps. The main quantities used in this Section are shown in
Table 1 below. The implemented code can be found on GitHub!. The advantage of this
methodology is that it allows us to experiment different market conditions, counterfactual
scenarios, etc, while at the same time providing uncertainty bounds on the desired quantities
of interest. These uncertainties arise from the aleatoric nature of the whole system. Indeed,
components such as FIL price, redemption frequency, amounts, etc are, in reality, random
processes.

Remark 2 (On Simulations). While our methodology can be understood as a sort of digital
twin (in the sense that it utilizes the same mechanisms as in [1, 4], the behavior of the
derived, observable quantities will depend on several factors, including initial conditions, etc.
These initial conditions are, in turn, impossible to capture with 100% accuracy. As such, we
emphasize that the current results are informative in a directional sense.

Price trajectories for FIL and SFTOKEN tokens are generated via Geometric Brownian
Motion (GBM), represented by the equation:

S(t) = Sp - exp <<u — 0;) t+ 0W(t)> , (1)

'https://github.com/juanpmcianci/SF
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Variable Definition
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S(t) Price at time ¢ following GBM: S(t) = Sy exp((u - J?)t + UW(t))
So Initial price (applied to both FIL and LQTY simulations)

L Drift coefficient in the GBM process

o Volatility coefficient in the GBM process

W (t) Cumulative sum of standard normal shocks scaled by \/dt

QriL Collateral amount in FIL tokens held in a trove

D USDFC supply (or debt) associated with a trove

CReurent  Current collateral ratio: PFILZQFIL

Spool Stability pool amount used for absorbing liquidations

L Liquidity pool amount that influences the USDFC price

Pusprce Price of the USDFC stablecoin

0 Exponent in the stability pool update equation

) Scaling parameter in the USDFC price update based on liquidity
Treturn Return from liquidations and airdrop gains

Tnatural Natural rate parameter for stability adjustments

Table 1: Definitions of key variables used in the simulation.

where Sy is the initial price, u is the drift, o is the volatility, and W (¢) denotes the cumulative
sum of scaled standard normal shocks.

Troves are modeled as collateralized positions characterized by a FIL collateral amount
Q1 and a minted USDFC supply D. The current collateral ratio (CR) is given by:

B
CRcurrent = FIL;)CQFIL (2)

A trove is liquidated if its CReyrent falls below a threshold (e.g., 110% over collateralization).
The liquidation gain is computed as the difference between the market value of the collateral
and the debt, potentially scaled by the stability pool’s size.

The simulation also incorporates dynamic operations on troves. New troves are opened
by sampling a target collateral ratio from a chi-square distribution and determining the
collateral quantity using a gamma distribution. Adjustments are made when the deviation
from the initial collateral ratio exceeds preset bounds, leading to modifications in the trove’s
debt or collateral. Associated issuance fees are computed as a function of the change in the
USDFC supply.

Protocol stability is maintained via a stability pool updated according to:

Spool,t - Spool,t—l X d X (]— + Et) X (]- + Treturn — Tnatural,t)g ) (3)



where d is a drift factor, € is a stochastic shock, retum is the return from liquidations and
airdrops, and Tyatural+ is the natural rate at time ¢.
Furthermore, the USDFC price is recalculated using liquidity adjustments:

Lo\
Puspre,: = Pusprc,i—1 (L : ) , (4)
t+1

with L; and L;,; representing the liquidity pool at consecutive time steps, and ¢ being a
scaling parameter. Arbitrage mechanisms further adjust the system: if Pysppc exceeds an
upper bound, new troves are opened; if it falls below a lower bound, redemption processes
are triggered. The main simulation loop is shown in Algorithm 1. The relevant sub-routines
are shown in the Appendix.

Algorithm 1 USDsf Stability Simulation Main Loop

1: Input: Simulation parameters (GBM parameters, fee rates, thresholds, etc.)
2: Initialize:

« Generate initial FIL price Sy gy, and LQTY price SpLqry

« Initialize troves, stability pool Speel, liquidity pool L, and other state variables.

3: GENERATEPRICEPATH(FIL) > Using GBM for FIL
4: GENERATEPRICEPATH(LQTY) > Using GBM for LQTY
5. for t+ 1 to T do

6: Update current FIL price Py, ¢

7: [troves, fees, . ..] < UPDATETROVES(troves, t, P+, Puspst.i—1)

8: Spoolt <= UPDATESTABILITYPOOL(Sp001t-1, ¢, return_ stability, Diotar)

9: [Li+1, Puspstt] < UPDATELIQUIDITY ANDPRICE(L;, Pyspsti—1, troves, t)

10: [troves, Pyspstt] <~ ARBITRAGEADJUSTMENTS(troves, ¢, Pyspst.:)

11: [PLqry.ts - - -] < UPDATELQTYMARKET(data, ¢, PLqry.:—1)

12: Record all state variables at time t.

13: end for

14: Output: Time-series data, total liquidations, final liquidity, and final USDsf price.

Our simulation environment is able to simulate and track the following observable quan-
tities {6, t > 0} for arbitrary simulation lengths.
It is also able to estimate arbitrary functions f of these observables, of the form:

Qol(6r) = E,[f(80)) = [ £(B)(d6y, o), )

with v the probability measure induced by the simulation. Less abstractly, Equation (5)
can translate into questions such as what is the average number of open troves in a day?
What is the probability of being liquidated for a given CR? What is the expected number of
redemptions?



Variable (¢;) Definition

S (t) Price of FIL over time

Nopen (1) Number of open troves over time
Nejose(t) Number of closed troves over time
Niig (%) Number of liquidations

Nrea(t) Number of redemptions

L(t) Pool liquidity

RP(t) Redeemed amount

C(t) USDFC supply

Table 2: Observable variables.

3.1 Example Run

We run our simulation engine for a year forth of simulated data (on an hourly basis), on
various market conditions, as described below. As we can see, our simulation is able to
capture the stochastic behaviour of these type of systems, as well as the effect that different
market conditions might have on them. Results are shown in Figures 1 through 4. Many
additional results can be found in [3]. In those experiments, we simulate the expected
behaviour of the quantities on Table 2 for 4 different market scenarios (base,bullish,bearish
and high volatility).

Specifically, in Figure 1 we observe different potential price trajectories for different mar-
ket conditions for FIL. These market conditions are expressed in terms of drift and volatility
(p, 0 above) and are obtained using historical data based on recent market conditions *

ZNotice that at the time of writing (March 2025) the market or FIL was not doing too well.
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Figure 1: Different price-paths realisations for FIL under different market conditions; base
(top left), bearish (top right), bullish (bottom left) and high-volatility (bottom right).

In figure 2 we see the corresponding USDFC price trajectories for the abovementioned
market conditions. As we can see, the protocol shows that the asset is stable across a variety
of market scenarios; however, its uncertainty bounds are ensitive to periods of high volatility.
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Figure 2: Different price-paths realisations for USDFC under different market conditions;
base (top left), bearish (top right), bullish (bottom left) and high-volatility (bottom right).

We plot the corresponding liquidations in Figure 3. Here we observe a clear (and intuitive)
dependence on the number of liquidated troves and the market condition. Indeed, notice
that the number of liquidations in inversely proportional to the price of FIL. This is an
intuitive result, since the CR of a given trove will decrease with the price of FIL. Interestingly
enough, we see that the number of liquidated troves significantly increase as the volatility of

the amrket increases.
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Figure 3: Liquidations vs Time under different market conditions; base (top left), bearish
(top right), bullish (bottom left) and high-volatility (bottom right).

Lastly, we observe the cumulative number of open troves in Figure 4. Once again, these
also have a direct dependence on the specific market condition.
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Figure 4: Cumulative number of Troves vs Time, under different market conditions; base
(top left), bearish (top right), bullish (bottom left) and high-volatility (bottom right).

4 Liquidation Risk Assessment

TL;DR. Current CR of 110% is fine to keep

We begin by investigating potential liquidation risk. Specifically, we aim at investigating
the liquidation risk, number of liquidations, etc as a function of the collateral ratio CRcurrent -
Our goal is to answer the following questions:

1. How does liquidation risk depend on CR?
2. Should we keep a 110% collateralization ratio, or should we use something different?

To analyze this, we implement our simulation environment on a variety of market sce-
narios for FIL, with different levels of optimism, as shown below. To this end, we run our
Monte Carlo simulation environment to estimate several Qol as a function of CR. Datasets
can be found in [3].
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Figure 5: Liquidation Probability vs CR — base case

4.1 Block Interval Analysis

We conducted a comprehensive block interval analysis to evaluate liquidation risk across
different timeframes. The experiment utilized high-frequency Filecoin price data collected
from 2024-04-08 to 2025-04-08, comprising 525601 distinct price points. We analyzed price
movements at four different block intervals (1, 2, 10, and 100 blocks) to identify volatility
patterns that could trigger liquidation events.

The methodology involved calculating the percentage price changes between blocks, then
measuring the statistical distribution of these changes, and specifically calculating the proba-
bility that price drops exceed 10% (our liquidation threshold). For each interval, we compute
the mean, median, standard deviation, minimum, and maximum price changes.

Table 3: Block Interval Analysis of Price Changes and Associated Liquidation Risk

Block Interval Mean Change (%) Std Dev (%) Min (%) Max (%) Liquidation Risk (%)

1 -0.0055 0.3488 -22.8831 1.8047 0.019
2 0.0105 1.4375 -22.9095 98.2385 0.0381
10 0.0302 3.4635 -43.543 130.797 0.2283
100 0.2044 7.8568 -48.8413 150.253 1.1035

The results revealed that short-term price movements (1-10 block intervals) presented
noticeable liquidation risk, with instances of price drops exceeding 10%. At the 1-block
interval, price changes averaged -0.0055% with a standard deviation of 0.3488%, indicat-
ing relatively stable short-term price behavior but with a maximum negative movement of
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-22.8831%. Similarly, 2-block and 10-block intervals showed increasing volatility with maxi-
mum negative price movements of -22.9095% and -43.543% respectively.

At the 100-block interval, we observed the highest liquidation risk in our dataset. The
standard deviation increased to 7.8568%, with a minimum price change of -48.8413%, rep-
resenting the largest downturn observed. This resulted in a liquidation risk of 1.1035%,
indicating that approximately 1 in 91 positions would face liquidation at this interval with
the current CR.

Based on the statistical properties of the observed price volatility, particularly the 100-
block interval data, we can conclude that a current 110% CR should be enough for most
purposes, provided that there’s sufficient liveness in the liquidation bots (i.e., that such a
liquidation is triggered within 100 blocks after dropping from 100% CR). This can confortably
be managed by the protocol.

5 Multiple Scenario Analysis

Before implementing USDFC on the Filecoin network, Secured Finance designed a struc-
tured test plan in collaboration with Filecoin ecosystem stakeholders. This plan, described
in the document titled “USDFC Test Plan for Filecoin Ecosystem” (March 11, 2025), out-
lines a series of real-time scenario-driven tests intended to ensure the stablecoin’s reliability
and security. Each scenario addresses a specific use case or stress event, ranging from nor-
mal minting workflows and cross-ecosystem payments to extreme market crashes and oracle
exploits.

The primary objectives of these tests are threefold: (1) to validate USDFC’s stability
mechanisms and peg maintenance in the face of volatile FIL prices; (2) to confirm smooth
integration with various Filecoin-based applications (e.g., storage providers and lending mar-
kets); and (3) to analyze resilience under potential disruptions, such as rapid price drops or
liquidity shortfalls.

Overall, the test plan involves a mix of interactive Zoom sessions, guided user flows, and
real-time monitoring of system responses. These controlled trials highlight any weaknesses
in the protocol’s liquidation and redemption logic, user interfaces, or broader network inte-
gration. In the following subsections, we summarize the key findings from thirteen diverse
scenarios, each representing critical aspects of USDFC’s functionality under both ordinary
and extreme conditions.

We implement our simulation environment to investigate the tasks described in USDFC
test plan®. Table 4 summarizes the key metrics from 100 Monte Carlo runs for each of the
13 scenarios. The table lists the final USDFC supply, minimum observed FIL price, and a
brief description of the key event triggered in each test.

3https://docs.google.com/document /d /1z3uGA3KmT87h1dnqnJHpz0W2npqjH1zbS8Maf2YdU74 /edit 7tab=t.0
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Table 4: Monte Carlo Summary for 13 Scenarios

Scenario Final Supply (USDFC) Min FIL Price Key Event

6 67 390 2.13 Collateral set and liquidation
7 58443 1.55 Market crash

8 58443 0.32 90% price crash

9 58443 2.13 Depeg event

10 58443 2.13 Forced redemption

11 58443 2.13 Consecutive redemption
12 58443 2.13 Oracle exploit

13 2980092 2.13 Mass minting events

5.1 Analysis

Scenario 6 shows that setting a trove at exactly 110% collateral and a subsequent slight
(2%) price drop successfully triggers liquidation, indicating effective risk detection under
low collateral conditions. In Scenario 7, a 50% market crash drives the FIL price down to
1.55, yet the USDFC supply remains stable, which reflects robust risk management. Scenario
8, with a 90% price crash, demonstrates extreme stress conditions, while Scenario 9 confirms
that depeg events can be injected without disrupting the overall supply.

Scenario 10 tests protocol resilience under liquidity shortage, with FIL price cycling
between $2.50-$5.00 while USDFC supply remains stable. No redemptions or intervention
events were triggered, demonstrating adequate handling of liquidity constraints. Scenario
13 evaluates mass minting events, showing successful processing of step-function supply
increases (51x greater than scenario 10), with each event adding 20,000-30,000 USDFC while
maintaining consistent FIL price volatility.

Overall, the protocol exhibits reliable performance under normal and moderately stressful
conditions. However, additional refinements are necessary to capture the full dynamics
of lending/borrowing and to simulate complex risk factors like liquidity stress and oracle
manipulation.

6 Understanding Redemption Risk

TL;DR. Redemptions occur even at high CR. The name of the game is to have (i) a
sufficiently high CR and (i) sufficiently high liquidity in front Redemptions in CDP protocols
similar to USDFC (e.g., based on [1]) are necessary for maintaining the stablecoin peg.
However, these events can create forced-liquidation risk for certain users.In order to obtain
a higher understanding of these events, we begin by perfomining an analysis of the Liquidy
troves in Ethereum.

Analysis of 5,758 redeemed troves shows that a total of approximately 546 million LUSD
and 221,073 ETH have been liquidated. Redemptions are concentrated in troves with col-
lateral ratios near the minimum (110%), and smaller troves are more frequently targeted.
These findings highlight the need for continuous monitoring of system risk, especially under
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volatile market conditions.

The joint PDF analysis reveals that redemption activity primarily targets positions with
lower collateral ratios (concentrated around 1.2), confirming the system’s mechanism of pri-
oritizing the most vulnerable positions first. Distinct vertical bands at specific log(LUSD
Redeemed) values indicate threshold effects rather than continuous distribution. Redemp-
tion risk decreases significantly as collateral ratios exceed 2.0, with minimal activity above
3.0, validating that the economic incentives function as intended by encouraging healthier
collateralization levels while systematically removing capital-inefficient positions. For users,
maintaining collateral ratios above 2.0 substantially reduces redemption exposure, while
protocol designers should note the discrete redemption thresholds for potential parameter
optimization to enhance system stability.

le-5

collateral Ratio
Probability Density

-2 0 2 4 6
loglo(Lusd Redeemed)

Figure 6: Joint PDF of Redemption Activity by Collateral Ratio and Position Size
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6.1 Distribution of Collateral Ratios

Distribution of Collateral Ratios at Redemption Time

B trace 0
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Figure 7: Collateral Ratio Distribution at Redemption

The distribution is right-skewed with a peak frequency between 1.2 and 1.5, just above the
Minimum Collateral Ratio (MCR). The average collateral ratio is 2.16, and the median
is 1.80, indicating that many users maintain positions close to the liquidation threshold.
Realistically, this means that, historically, redemptions can occur even at high

collateral ratios.
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6.2 Collateral Size Distribution

Number of Troves

Number of Troves by Collateral Size (ETH)
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Figure 8: Collateral Size Distribution

Most troves fall in the 10-100 ETH and <10 ETH ranges, with only about 380 troves
exceeding 10,000 ETH. This bimodal distribution suggests retail users maintain smaller
positions while larger positions are held by institutional accounts, each carrying distinct risk

profiles.

6.3 LUSD Redemption Size

Distribution of LUSD Redeemed per Transaction
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Figure 9: Distribution of LUSD Redemption Size
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The redemption size distribution is highly right-skewed. The median redemption is approx-
imately 30,364 LUSD, with the 25th percentile at 6,038 LUSD, the 75th at 94,994 LUSD,
and the 99th percentile at 878,499 LUSD. This indicates that while most redemptions
are small, occasional large redemptions occur.

6.4 Redemption Concentration

The top 10 redeemers account for roughly 39% of all LUSD redeemed. One address alone is
responsible for about 62.6 million LUSD (approximately 11.5% of the total), which implies
that a few large participants dominate redemption activity.

Table 5: Top 10 Redeemers by LUSD Volume

Owner Address Total LUSD Redeemed

0x9¢5083dd4838e120dbeac44c052179692aabdach 62,693,656.34
0x0561a78021d8966ddd20c28c6¢4318d8675eelf0  53,296,767.56
0x931433324e6b0b5b04e3460ef3fb3f78ddad3c721  38,813,043.74
0xc2720997ea2ea9baad61e8f7de8cadbbalbbelb3  13,237,524.51
0x13f5¢252e8acd60671{92¢7172cf33661221ef42 9,829,959.39
0xalb3ch86731d74178803318db709ffaacd442ead7?  8,885,280.76
0x5b23f5b330dfcc20b353bab85ee3a302af930005  8,506,987.53
Oxlald3c8ded46e3f3a92dc3af8358109438d3clc2  7,454,048.37
0xbbf2c9e6eb46a84b630f138de8f648fcecb1fadb 6,081,663.74
0x1309c¢007567a71b393094¢21e70bd2647356a352  5,862,981.48
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6.5 Collateral Ratio vs. Redemption Size

Collateral Ratio vs LUSD Redeemed
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Figure 10: Collateral Ratio vs. LUSD Redemption Size

There is an inverse relationship between collateral ratio and redemption size: larger redemp-
tions tend to target troves with collateral ratios between 1.1 and 1.5.

7 Mitigating Redemption Risk

TL;DR. We test several mechanisms to reduce the redemption risk. We observe that all
implemented methods manage to protect LP from redemption risk.

7.1 Reducing the Likelihood of Redemptions

Reducing the likelihood of redemption can also be addressed operationally. One method
involves deploying a buffer Trove with a deliberately lower collateral ratio than the LP’s
Trove. By setting the buffer trove’s collateral ratio, C Ryuger, such that

CRbuffer < C’FiLP )

third-party redeemers naturally target the buffer trove first. This buffer trove holds a reser-
voir of USDFC that is used to immediately buy back FIL if redemption occurs. The acquired
FIL is then reinserted as collateral, and a new borrowing is initiated—this cycle ensures that
the buffer trove continuously remains the most attractive (i.e., lowest ratio) target, thereby
protecting the LP’s Trove from frequent redemption hits.
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Implementation We use our simulation environment to test the effectiveness of this
method. We run 100 Monte Carlo simulations of 1 month each. Each simulation has a
scale of 1 hour. We set

1.1 = CRbuﬂ‘er < CRLP.

Our model is run on three different market condition scenarios: a base case, a bearish
case, and a bullish case. results are shown in Tables 6-8 below.

Table 6: Base Scenario (Drift = 0.1, Vol = 0.5)

Metric Buffer No Buffer
Nliquidate 3.52 3.51
TMredempt 11.00 12.31
Final Supply 1,518,405 1,351,861
Redemption Buffer Vol 16.66 0.00
Redemption LP Vol 0.00 15.12

Table 7: Bearish Scenario (Drift = -0.5, Vol = 0.5)

Metric Buffer No Buffer
Niquidate 6.19 6.09
TMredempt 7.45 9.34
Final Supply 1,505,705 1,326,649
Redemption Buffer Vol 11.76 0.00
Redemption LP Vol 0.00 15.04

Table 8: Bullish Scenario (Drift = 0.5, Vol = 0.5)

Metric Buffer No Buffer
Niiquidate 2.17 2.64
TMredempt 13.83 15.20
Final Supply 1,527,749 1,375,423
Redemption Buffer Vol 25.59 0.00
Redemption LP Vol 0.00 15.70

Across all scenarios, the introduction of the buffer trove shows clear benefits. In the base
scenario, the buffer absorbs an average redemption volume of approximately 16.66 units,
preventing about 15.12 units of redemption pressure from hitting LP’s troves. In the bearish
case, although the overall redemption activity is lower, the buffer still captures roughly 11.76
units of redemption volume compared to no absorption in the absence of a buffer—leading
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to fewer forced liquidations and a higher final supply (indicative of preserved collateral
positions). In the bullish scenario, the buffer’s impact is even more pronounced, absorbing
over 25 units of redemption volume and reducing the redemption load on LP’s troves.

Overall, these results suggest that a defensive buffer trove can effectively mitigate redemp-
tion risk by diverting redemptions away from LP’s troves, thereby reducing the frequency of
liquidations and preserving a higher final supply. This directional benefit can be critical for
U.S. entities concerned with unexpected capital gains events or forced liquidations triggered
by redemption waves.

7.2 Additional Liquidity

Another scenario focuses on providing sufficient liquidity to reduce depeg risk. When the
stablecoin’s price deviates below its $1.00 peg, it may trigger redemption waves. To counter
this, liquidity pools (e.g., USDFC/FIL and USDFC/axlUSDC pools via Axelar bridging and
SushiSwap on FVM) are established to maintain high liquidity and reduce price slippage. The
liquidity is determined such that it can handle typical daily USDFC volumes; for instance,
ensuring that a $100k trade results in less than a 1% price impact. This approach, which
parallels MakerDAQO’s Peg Stability Module (PSM), leverages both cross-chain bridging and
on-chain Automated Market Makers (AMMs) to maintain the stablecoin’s peg and thereby
disincentivize redemption arbitrage.

7.2.1 Actively Monitoring

Enhanced user interfaces and trove monitoring systems provide additional safeguards against
redemption risk. A critical metric is the “Debt in front” of the LP’s Trove, which represents
the total USDFC in Troves with collateral ratios lower than that of the LP’s Trove. A high
“Debt in front” indicates that the LP’s Trove is further down the redemption queue, reducing
exposure. Conversely, if this debt diminishes, it signals an increased redemption threat.
Automated alerts can notify the LP when the “Debt in front” falls below a predetermined
threshold, prompting proactive measures such as adding collateral, deploying a buffer Trove,
or injecting extra protocol liquidity. Tools akin to DeFiSaver can also be utilized to monitor
and auto-manage trove adjustments, including partial re-collateralization, thereby reducing
the risk of forced redemptions.

7.3 Tranching

One additional approach here is tranching, which is somewhat similar to the buffering ap-
proach. Specifically, the idea here is to modify the redemption mechanism. Consider, for the
sake of the example, two tranches (e.g., categories) of troves: normal and preferential. In-
stead of executing redemptions against the troves with the smallest CR, one could do either
one of these:

1. priority. execute redemptions against the normal tranches first, and if there’s any
liquidity left to be redeemed, execute it against the preferential tranches. Notice that
this is quite siimlar to the buffer approach, but it is arguably less manual. This
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approach protects LP from redemption risk provided that

E [LiquidityNormalTrance] > [E [RedeemedAmount] (6)

2. proportional. In this setting, the redeemable amount is split in such a way that
a proportion p € (1/2,1) is redeemed against the normal tranche and a proportion
1 —p < p gets redeemed against the preferential tranche. In this setting, LP can get
at least a reduction of 100(1 — p)% provided that (7) holds true.

7.4 Increasing Redemption Fees

One last approach is to simply increase the redemption fees. Naturally, due to the forces of
supply and demand:

E [LiquidityNormalTrance] oc RedemtionFees ™', (7)

i.e., the more expensive fees are, the less incentivized people will be to redeem. This, in turn
can be achieved by changing the fee mechanism, as is done in Liquity V2. That being said,
after testing this mechanism we decided to not pursue it further since (i) redemptions are
still an essential part of the pegging mechanism and (ii) it relies heavily on the elasticity of
the redeemers.

8 Conclusions

This technical analysis shows that USDFC’s core design—adapted from existing CDP-based
stablecoin protocols—offers robust performance under a wide range of market conditions.
By simulating the behavior of FIL-collateralized troves, monitoring liquidation thresholds,
and modeling liquidity-driven price adjustments, we have demonstrated that the protocol
can effectively maintain its peg against moderate and even severe price shocks.

In our stress tests, which included volatility spikes, mass redemption events, and extreme
price crashes, USDFC generally exhibited resilience. Liquidations tended to occur most
frequently in scenarios where collateral ratios were set too low, but adjusting the system
parameters (notably the minimum collateral ratio) reduced liquidation and redemption risk
considerably. Practical mitigation strategies such as buffer troves, and additional liquidity
provisioning, helping to divert unwanted redemptions away from individual troves.

Although redemptions are a natural part of any collateralized stablecoin design, their
impact remains manageable if the protocol is calibrated to handle rapid changes in mar-
ket sentiment. By adapting parameters to Filecoin’s unique pricing patterns and providing
sufficient liquidity buffers, the protocol can continue operating securely without substantial
risk of depegging or runaway liquidation cascades. The simulations therefore give confi-
dence that, under well-chosen parameters and careful monitoring, USDFC’s mechanism is
fundamentally stable, even in stressful conditions.
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A Pseudocode

A.1 Subroutine: UpdateTroves

Algorithm 2 UpdateTroves(troves, t, P+, Puspsti—1)

1: for trove in troves do

2 Compute CReyrrent < PFIL’tfoFIL

3 if CReyrent < threshold then

4 LIQUIDATETROVE(trove, Prir ¢, Puspsti—1)

5: end if

6: end for

7: Adjust existing troves based on deviations from their initial collateral ratios.
8: Close troves based on random shocks and the current USDsf price.

9: Open new troves by sampling target collateral ratios and collateral quantities.
10: Compute and accumulate issuance fees from adjustments.

11: return updated troves and related metrics (e.g., fees, counts).

A.2 Subroutine: UpdateStabilityPool

Algorithm 3 UpdateStabilityPool(Spoolt—1; ¢, Treturns Drotal)

1: Generate shock ¢ ~ N (0, Ostabiity)
2: Retrieve ryapuras from the natural rate series.
3: Compute:
Spool,t — Spool,t—l X d X (1 + €t> X (1 + Treturn — Tnatural,t)e

4: Cap Spool,t at Dtotal-
5: return Spol -
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A.3 Subroutine: UpdateLiquidityAndPrice

Algorithm 4 UpdateLiquidityAndPrice(L:, Pyspsti—1, troves, t)

1: Update liquidity pool L;.; using:
Ly <+ L x drifty, x (1 4 shocky)

2: Compute total USDsf supply Diotal = Dtrove D-
3: Calculate new price:

1/6
Ly
PUSDsf,t — PUSDsf,tfl
Li

4: return Ly, and Pygpst-

A.4 Subroutine: ArbitrageAdjustments

Algorithm 5 ArbitrageAdjustments(troves, ¢, Puspstt)

1: if Pyspsr: > upper bound then

2 Open additional troves to increase supply.

3 Adjust issuance fees accordingly.

4: else if Pygpsr: < lower bound then

5: Trigger redemptions to reduce supply.

6 Adjust trove parameters to reflect redemptions.
7: end if

8: return updated troves and adjusted Pyspss-

A.5 Subroutine: UpdateLQTY Market

Algorithm 6 UpdateLQTYMarket(data, ¢, PLory—1)

1: if ¢ < month then

2 Set PLqry,: < Puqry:—1 and estimate earnings via a stochastic process.
3: else

4 Compute annualized earnings from recent issuance and redemption fees.
5 Update Prqry,: based on:

annualized earnings
Total LQTY supply

Prqry, + discount factor x PE ratio x

end if
return P qgry, and related market metrics.
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